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Abstract

% An analytical study is presented regarding the
Eé determination of a pressure gradient dependent criterion for
| flow transition from laminar to turbulent flow. The results
;j obtained were derived from two parallel approaches to ‘'ow
%; stability; one of wave-dependent stability and the oth of
.; vorticity-dependent stability. In both cases, one a
Sﬁ variable transition Reynolds number dependent upor .ae
;i ambient pressure gradient and the other one of a constant
i‘ transition Reynolds number based on the boundary-layer
&? displacement thickness, the prediction results were either
§§ as good or better than those from available prediction
£¢ ‘:P methods. In addition these two criteria were used to

predict transition locations on a NACA 0018 airfoil, again
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I. Introduction
Discussion

The development of an understanding of the mechanism or
mechanisms responsible for the transition from laminar to
turbulent flow is one of the most unknown areas in the field
of fluid mechanics today. Rather than being dependent upon
one flow condition or parameter the actions of flow
transition is seen to be a function of many different flow
factors that are not necessarily independent of one another.
Some of these are: the roughness of the flow passage walls;
heating or cooling of the passage walls; obs.ructions in the
flow field; blowing or suction at the passage walls; mass
transfer or chemical reaction with the passage walls;
pressure pulses (noise) in the flow; deformable wall
geometry; and, ambient pressure gradients in the flow
(Ref. 1). One of the major problems in either an
experimental or analytic treatment of this subject is the
difficulty in isolating the effect of the variation of one
flow parameter while keeping the others constant. This
problem is due to both the technical difficulties
encountered in monitoring and controlling the other
parameters and to the functional interdependence of these
parameters which results in large data scatters in similar
investigations and inhibits comprehensive studies of flow

transition,. These complications have resulted in
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significant obstacles in the theoretical study of flow

. 'ﬁk} transition and have limited the experimental data to a ]
13 small, specialized body. The many parameters used to ’
§§ characterize the flow take a wide variety of functional i
§¥ forms which also tend to defy correlation into a
fﬁ comprehensive picture.

33 An additional barrier to fluid transition study is that
:* not only are the factors affecting transition variable in
o their effect upon transition and related to each other in a
:é complicated manner, but transition, and subsequently

bt transition data, has not been uniquely defined. Although
,ﬁ there exist universally accepted concepts for laminar flow
:% and turbulent flow, the transition of a flow has been
‘3 't? variously reported in terms of: the start of transition
'i? (the appearance of turbulent spots); the end of transition 1

(the flow consisting of a variably-defined level of N

2

turbulence); or, a region of transition that lies between ?
fully-laminar flow and fully-turbulent flow and contains the

two previously mentioned boundaries. Finally, most

theoretical studies of this field, both analytic and

.
P T AR

>, numerical, do not deal with transition at all but with flow

a instability where an unstable flow is defined as a flow :
v R
- which contains Tollmein-Schlichting waves of such ﬁ
f} frequencies and wavelengths that their amplitudes will tend

1} K
™ to magnify as a function of time and will subsequently cause 1
N the flow transition to turbulence.
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Broblem Statement

With the above limitations taken into consideration,
this study focused on only the effect of an ambient pressure
gradient in the flow on the mechanism of transition. An
empirical prediction method based on a transition Reynolds
number, based on fluid boundary-layer momentum thickness,
was developed by Kays and Crawford (Ref. 2) that yielded a
single value of 360 for a flow regardless of the history of
the flow boundary layer. Hermann Schlichting (Ref. 1),
conversely, reported a theoretical dependence of fluid
instability on the presence of a pressure gradient where he
used a critical Reynolds number based on the fluid boundary-
layer displacement thickness. This study sought to develop
a prediction method that blended these two ideas into a
single criterion (i.e., encompass both the momentum
interaction of the boundary layer and the influence of the

presence of a flow pressure gradient).
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T II. Backeground

-'\-

;g Stability Iheory

E: The origins of flow stability theory are derived from
¢f an attempt by fluid mechanicists to explain flow transitions
Ez from first principles. This theory is based directly upon
2 the incompressible, three-dimensional Navier-Stokes
:A equations with the assumption of one-~dimensional
Eg pertgyrbation velocities. With the use of perturbation
‘IH theory, the assumption of small amplitude disturbances, and

»33 the retention of only the linear perturbation terms, the
gg Navier-Stokes equations are transformed into what is
- (53 commonly known as the Orr-Sommerfeld equation. A full
RS o derivation of the Orr-Sommerfeld equation, based in part
23 upon the treatment of Hunt (Ref. 3) and in part upon that of
o Schlichting (Ref. 1) is given in Appendix A. The usual form

.';:‘ of the equation is:

(G-c)(B" - a2@) - T"p = —L (g - 202gm 4 obp) (1)
o aR
._:::'
4 ‘:'.'
‘ﬁ; where
o
o U = boundary layer velocity profile
A
tgk ¢ = complex wave speed
;\f § = wave amplitude
~T e a = wave number
i .‘{‘. l'::::;:
\ ‘
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0
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Reynolds number (usually based upon edge

velocity and displacement thickness)
and all variables are nondimensional with the primes
denoting derivatives with respect to the coordinate normal
to the mean flow direction.

The Orr-Sommerfeld equation represents a complex,
fourth-order homogeneous ordinary differential equation in
@, yet with both u and @ being functions of the normal
coordinate and due to the fact that (C,a , R) represent a
related family of parameters, there is no closed-form
solution to this equation. Thus, the main tool of flow
stability has no known exact solution. Common approximate
analytic solutions use asymptotic approximations that
involve recursive Hankel functions of order 1/3, such as
Lin's method (Ref. 4). Existing computer-aided numerical
solutions as a rule either use eigen-value "shooting
methods" (Ref 5) or expand the equation in terms of
orthogonal polynomials, such as Chebyshev polynomials
(Ref. 6), and use successive-guess and recursive
relationships among the polynomials to achieve approximate
solutions to the Orr-Sommerfield equation.

The usual method of presenting these stability results
is in the form of a neutral stability curve (see Fig. 1).
In this plot, the curve represents the variation of wave

number as a function of Reynolds number. The points on the

curve represent Reynolds numbers and wavenumber combinations
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which do not tend to be amplified or dampened temporally for
the associated waves. The region outside of the curve
represents those combinations of wavenumber and Reynolds
number for which disturbances tend to damp-out and the
region inside the curve represents those combinations for
which disturbances tend to be amplified and for which the
flow is said to be unstable. The Reynolds number below
which no value of wavenumber will yield unstable flow is
said to be the ¢ritical Revnolds pumpber and is the minimum
value of the Reynolds number on the curve. Due to the
approximate nature of the existing solutions there is a
considerable variation of determined Recrit values as can be
seen in Fig. 2 which is from a compilation by van Ingen
(Ref. 7) where Rerit varies from 321 to 680. With this
large variation in mind, stability theory results are

treated warily and are considered as approximate only.

Iransition Versus Instability

Stability theory, though it is derived from first
principles through the Navier-Stokes equations, is in fact
quite limited when true transition is considered. Besides
the approximate nature of the Orr-Sommerfeld equation
solution which does not yield unique values for any one flow
situation treated by stability theory, most common flows
tend to violate one or more of the basic assumptions used to
derive the theory. Some of these violations are: velocity

components nonparallel to the mean flow direction that tend

‘‘‘‘‘‘‘
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2 with Zero Pressure Gradient from Different
: Sources, (Ref.7)




| 3y

WX,

A A N

<

o

§ LA

L}

4

L]
)

0
-
-

s
A

to make the flow unstable at lower Reynolds numbers;
nonlinearity of the perturbation velocity components that
tend to invalidate the linearized theory used to derive the
Orr-Sommerfeld equation; dependence of the mean flow
velocity on its streamwise coordinate that is neglected in
stability theory derivations and adds another degree of
complexity to the flow situation; and, large amplitude
disturbances that are observed just prior to transition that
are considered infinitesmal in magnitude for stability
theory. Even with these severe limitations of stability
theory, Recrit is always less than Rtrans for a given flow
case and thus provides a conservative criterion for
transition. Furthermore, the behavior of Rcrit from one
flow case to another tends to follow the same trends that
Rtrans does, yielding a characteristic, 1f not exact,
criterion for flow transition,

The fundamental basis of flow stability theory is that
flow instability, and thus flow transition, is dependent
upon the behavior of the amplification or dampening of the
Tollmein-Schlichting waves present in the flow. A mechanism
that does not depend on this type of wave action yet could
plausibly play an equal if not greater role in flow
transition would be a welcome addition to transition theory
if it could be seen to have a firm foundation in first
principles and also not to have many of the limitations of
wave-theory., Such an approach which was based on "vorticity
stability™"™ was investigated in this study with favorable

results.
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II11. TIbheory Development

The determination of a pressure gradient criterion for
flow stability, and by allusion transition, required the
knowledge of the values of A(Pohlhausen velocity profile
shape parameter), § (boundary layer thickness), §1
(displacement thickness),and §2 (momentum thickness) for
each flow case in addition to the value of Recrit. This was
due to the fact that various sources based their cited
values of Recrit or Rtrans on either §1 or 62, or in the
case of internal flow, Dh (hydraulic diameter) which could
be related physically to for fully-developed internal

flows.

BPressure Gradient Parameter

The pressure gradient parameter that was used
throughout this study was Pohlhausen's shape factor based on
boundary layer thickness,A , or a modified form commonly
used which is based on momentum thickness, A ., The normal

Pohlhausen parameter is defined as

_ 52 dUm

Az o — (2)
v dx
where Um = Um(x), and in the case of the wedge family, Um

is of the form, Um = Uox™, with Uo being a constant and x is

the streamwise coordinate. A is defined similarly as

‘,’\"5. "-_ ".." .
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v, & A < —3— SEE]. (3)

. v dx

€,

fl

4 For the flow cases which were considered here, the flow was
attached laminar flow, {i.e. instability and transition

:? occured before flow separation from the boundary wall. In

’,

3 the case of external flow, Bernoulli's equation for along a
streamline outside the boundary layer is given as

o dP d

N & (4)

N dx dx

" and this can be used with equation (1) to denote A and j as

pressure gradient parameters of the form:

- dP
2228 (£) (5)

ulm dx
.Q
» -(82)2 ,4p
3 2 ——— (=) (6)
:v' ulUm dx
3 This rendering of as a measure of the magnitude and
)1 typeof pressure gradient ( A positive denoting a streamwise
i pressure drop, or favorable pressure gradient, etc.) was
5 very convenient for the flat plate cases studied due to the
- common treatment (Ref. 1) of the boundary layer profile as a
"N
a0 polynomial in A. Here, the velocity profile was of the
a $§§ form:
- 3,y

---------
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u(n) = Um =(2n=-2n3+nt) + 2 (n-3n2+3n3- nt) (7)
6

where nis a nondimensional coordinate to the flow commonly
denoted as n= y/8, With the variation of A, different
profiles of the nondimensional (corresponding to u(n)/Um)
in equation (1)) were obtained by Schlichting (Ref. 1), et.
al., that yielded different Rcrit values depending upon the
value of A (see Fig. 3). This functional relationship of
Rerit, based on displacement thickness, was plotted versus A
in Fig. 4 (the plot as far as can be determined from Ref. 1
and Ref. 8 was merely a curve drawn through the indicated
stability trials). Schlichting further implied that this
relationship for Rerit vs. A, based on various pressure
gradients imposed on flat plate flow, could be universally
applied to all external boundary layer flows.

The assumption of a universal relationship between
Rerit and A as given in Fig. 2 was tested by considering
the "wedge flow" cases, which are particular solutions of
similar solutions of boundary layer flow. These flows
experience a streamwise pressure gradient that is due to a
flow area change where the conventional parameter is
Hartree's 8, Hartree's 8 is physically interpretted as the
ratio of the wedge angle over and is a function of the
exponent of the stream-wise coordinate for similar flows

denoted in the following form:

R B T R G o T U
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. Yt m+ 1 i
if The relationship between A and 8 (see Appendix B for a i
- ‘
9 full derivation) was found to be 1
2 l
o - m
= —(n)28(m + 1) (9)
2 1
i
where n . is the value of the nondimensional coordinate at f
the edge of the boundary layer (where u(n) is 99% of Um).
j; With this relationship it was possible to compare on one
pa
SN plot (see Fig. 5) both the flat plate cases and the wedge
.l
v flow results and to verify that what Schlichting implied but
is did not prove appeared to be correct. !
é? The two internal flow cases of two parallel infinite !
i G flat plates (plane Poiseuille flow) and fully-developed pipe
5' - flow (Hagen-Poiseuille flow) were also considered in this |
'1 study. There was a stability result available for the
: parallel flat plate case (Ref. 6) but the pipe flow case was
? found to be stable to infintesimal disturbances up to all .
% critical Reynolds numbers tried (Ref. 9) and no stability i
result was thus available. However, a corresponding !
,§ approximate parameter was estimated for both cases due to i
[ 1
;E the availability of transition data for both cases. This g
AN
- approximate method followed from the known exact solutions 1
ﬁ of the Navier-Stokes equations (Ref 1:85-86) for Poiseuille }
;4-, I
¥ flow of }
"
- -n2  dp 2 4
= T u(y) = — (=1 - (D5 (10) ]
‘\., AR 2“ dx n "
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and for Hagen-Poiseuille flow in a pipe given by

RS dP 2
u(y) = 222 (g - &y ) (11)

4u dx R
where y is a coordinate measured from the centerline, x is
the streamwise coordinate, h is half the distance between
the parallel plates, and R is the radius of the pipe. The
relationship between the pressure gradient and from
equation (5), with the substitution of U centerline for Um
and h and R respectively for 6§, was adapted wholesale to
obtain "equivalent" values of A for the parallel plates and
the fully-developed pipe flow, which were respectively,
A=2 and A= 4. The values of Aobtained were those
necessary to be consistant with the parabolic velocity

distributions commonly given for these flow cases.

Ibhicknesses

For the external flow cases the different boundary-
layer thicknesses were defined in the usual manner. The
usual boundary-layer thickness, s, was the distance out from
the wall at which the local velocity had obtained 99% of the

"free-stream" velocity value. The displacement thickness,

1, was given by

U
§1 = / (1 - (Y'I)) dn (12)

o] @

And, the momentum thickness, §2, was given by:
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§2 = f uln) (1 - E(.l).)dn (13)
[+ Ua U

The flow thicknesses for the interior flow cases were
obtained by modifying the conventional definitions given
above. The boundary layer thickness, s , was assumed to be
half the flow passage dimension for both the fully-developed
internal flow cases. A detailed analysis of the
approximations for §1 and §2 of both internal flow cases is
given in Appendix C. The values for the parallel flat
plates were approximately 61 = h/3 and §2 = h/7.5 where h
was half the plate separation, and the values for the fully-
developed pipe flow were approximately 81 = (0.293)R and
2 = (0.1835)R, where R was the pipe radius.

Correlation

The determination of the approximate value of the
displacement thickness for the parallel plates case along
with its m"equivalent™ Pohlhausen parameter allowed the
inclusion of another stability theory result (Ref. 6) on the
plot representing the variation of Recrit with A(see Fig. 5).
As can be seen this plot, the internal flow result seem to
be consistent with the external flow cases for this work's
interpretation of A,

Since most transition data appeared to be reported in

terms of R&2 and not Rs1, the stability results were
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converted into critical Reynolds numbers based on 52 (see
Fig. 6). An analytic equation was then determined that fit
the stability results that was given by

Réo,crit = 2954 tanh (lL:—ELE) + 2981 (14)

207

and was presented with the stability results in Fig. 7.
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L IV. Yorticity Stability
f\f Concurrently with the work done to produce an analytic
?}' expression for the wave stability dependence on the ambient
» pressure gradient, the stability of the vorticity of the
_i; flow was also investigated. The laminar flows considered in
Ji§ this work were assumed to be parallel. General turbulent
e flow, however, is known to be greatly unparallel locally
iﬁ where large vortices feeding "large eddies" break up the
i; main flow and in turn devolve into "small eddies™ that are
N responsible for turbulence on a local level (Ref. 10). As
§§ long as the viscous stresses acting against the flow
%ﬁ i counter-balance the flow's inclination to rotate and form
- cja eddies, the main mechanism of turbulent flow motioh, eddy
‘4 production, cannot be sustained and the flow remains
*ﬁ laminar. The objective of the work done in this section was
}2 to determine a means of predicting when the flow would
tg "trip" over into eddy motion (rotating pockets of fluid) and
EE thus become turbulent.
:; The anlaysis of the effect of vorticity upon flow
352 transition was based upon a rough visualization of the flow
E§ as a so0lid element moving along a resisting surface
- (Fig. 8). As long as the moment due to the element's weight
iﬁ counters the inertial moment, the element will tend only to
_? translate along the contact surface. If however the element
Q& i?} is elongated away from the contact surface, the weight
N
A 21
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moment will decrease and the inertial moment will increase

(Fig. 8b). If this deformation is continued until the
inertial moment is greater than the weight moment (Fig. 8c),
the element will tend to rotate as well as translate. When
this so0lid element is now considered as an incompressible
fluid element, the inertial moment corresponds to the
product of the shear stress (proportional to the vorticity)
in the fluid and its location away from the flow passage
wall. The flow (which is the summation of all of these
infinitesimal moving fluid elements) is considered to be
unstable when the first moment of the flow vorticity is
greater than the effect of the net balancing forces acting
on the fluid element (Ref. 11). While these balancing
forces are not identified specifically, it is hypothesized
that they are dependent on fluid properties but independent
of local flow conditions; that is to say, once the first
moment of vorticity gets to be some magnitude, the flow
becomes unstable.

The vorticity of the parallel flows considered was

given by
;:va:(iv--a—u) (14)
ax 3y

which, if av/ax is neglected, was simplified to

T = - A (15)

¥y

The first moment of vorticity was designated as I, where I

was defined by
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[- way (16)
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The viability of this approach was tested by
considering the Pohlhausen boundary-layer profile and the
parabolic velocity profile for fully-developed parallel
plate flow. In the first case, the velocity profile was

given by
2y 2y3  y% Ay 3y2  3y3
u(y) = U (== = ———_+ =—— + (m— = ==+ == = ==)) (17)
.8 s 3 g4 6 §2 §3 &
The moment, I, was then given by
U ’ 2 6y3  yyH
Y y y
I= - (== = =2 + we &
v -[ s §3 &
o
6y2 3 4
A W WY gy (18)
6 & S §3 8
with the result that
Us , 3 A

Using the shape-factor ratio of 61 to § given by Pohlhausen
(Ref. 1) as (3/10 - A/120), this measure of stability was
then I = Rsq , or the Reynolds number basedon the
displacement thickness. The second case used a velocity

profile given by
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u(y) = u (&L - Y2 (20)
h h

where half the displacement between the plates, h, was
equated to the boundary-layer thickness, s . The moment, I,

was then given by

u 2y 2yl
I = — (— = —=) dy (21)
v f ) 62
o
and resulted in,
r =Y (22)
3 v

When compared with the shape-~factor previously determined
for the parallel plates case of 1/3, I again was the value
of the Reynolds number based on the boundary-layer
displacement thickness, Rsq - These results indicated that
the value of the Reynolds number based on displacement

thickness was the single parameter for flow stability.
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V. BResults
,iﬁ The validity of the two prediction methods was examined
B
’f$ by comparing the predicted results with those available from
% .

experimental investigations in two different ways. The
prediction results were first compared to accumulated data
for a variety of different airfoils and flow cases and then

the prediction methods were used to analytically estimate

%;‘ the location of the transition point for a NACA 0018 airfoil
A
:) that experienced two different body Reynolds numbers and
g different angles of attack.
a .l

>
e Bressure Gradient Method

¢ w The pressure gradient method that was derived from
;5 stability theory was converted into transition data in two
3% different ways. Initially the analytic curve that fit the
x stability data,

3, A- 4.5
N Ré2,eprit = 2954 tanh (——2 7 ) + 2981 (23)

was converted to a transition basis by scaling the predicted

critical value of Rsy,q pyt 231

0) to the transition value of

for the zero pressure

gradient case ( A

Rso,trans = 1150. This transition value was obtained by

modifying the Kays and Crawford method (Ref. 1) where a

value for Rx,trans = 3,000,000 was used instead of their

value, Rx,trans 300,000 (this higher value is
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experimentally supported by Reference 12). The resulting

analytic equation was then:

A~ i,
Ré2,trans = 14786 tanh (—--77—2) + 14917 (24)

The second method took into account the known difference

between Rs,,..ijt and Rso,tprans Shown in Figure 9 (Ref. 13).

An analytic curve fit for this difference was found to be

ARso> = 400 exp(601) + 400 (25)

where A was related to A (Ref 2:210) by

rve (S a1 a2, (26)

315 945 9072

This difference was then added to the Rso,orit expression of
equation (23) to obtain a transition Reynolds number of the

form:

A= b,
Rs2,trans = 2954 tanh (-—577-2) + 2981 + 4Rg» 27)

The results of both of these methods are shown in Figure 10,

together with experimental results which were taken from

Reference 14, (It must be noted that the expression for ARs

was only valid for A values less than 0.025, or A values

less than 2.0, and subsequently care should be taken when

using that method of conversion.)
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VYorticity Stability Method

Two values of Rgy,tprans = constant were chosen
to represent the vorticity-stability theory; a value or
Rsq = 3000 that corresponded to low (0%) free-stream
turbulence levels and a value of R ¢ = 1226 that

corresponded to high (1.2%) free-stream turbulence levels.
These values were chosen so as to be consistent with the
findings of Hall and Gibbings (Ref. 13). A shape-factor
consistent with Pohlhausen's polynomial fit (Ref. 1:210) was

used to relate Rs, to Rsq by the function

37 1 1 2
T = —— ) = —— )
315 945 9075
R52=R61 (28)
3.1
10 120

The resulting variations of Rs2,trans With 2 are shown in

Figure 11 along with previous results and further data (from
Ref. 13). It was evident that a constant value of Rgq fit
the data for A < 0 (adverse pressure gradients) quite well
but tended to underestimate the value for Rss,tpans fOF
A> 0 (favorable pressure gradients). This lack of
correlation for vorticity stability to experimental data for
accelerated flow might be due to the limitations of a fourth
order polynomial fit for the velocity profile in this region
or might be due to other undetermined reasons. It is
interesting to note, however, that in the favorable pressure

gradient region the transition equations based on

______________
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wave-stability fit the low-level free-stream turbulence
data. It is possible that wave mechanics effects over-
shadow the effects of vorticity-stability of the flow for
these cases.

The two values of Rgq = constant, 3000 and 1226, that
are presented in Fig. 11 are arbitrary bracketing cases for
the data. These values in turn represent flat plate
Reynolds numbers based on the location from the leading edge
of 363,000 and 3,130,000 respectively, which are within
reported experimental limits of experimental flat plate,

zero pressure gradient, transition (Ref. 12).

Internal Flow Results

The two internal flow results considered in this work
concerned parallel flow between two infinite plates and
fully-developed flow in a pipe. The parallel plates result
was based on a thin rectangular duct study where the aspect
ratio was 8:1 (width/depth) and the transition Reynolds
number based on average velocity and hydraulic diameter was
experimentally found to be 2600 (Ref. 15). This Reynolds
number yielded Rs2,trans = 585. The pipe flow result was
based on the universally quoted value of the Reynolds
number, based on hydraulic diameter and average velocity, of
2000 for transition. This value yielded a value of
Rs2, trans = 366. both of these results are shown in Fig. 11
and signified by "o". It is interesting to note that the

low-level free-stream turbulence value of Rgq = constant




i (3000) yielded a Ry ¢y pg = 6853 , which is well within the
‘ﬁ% :ff known experimental range of 2000 to 40,000 (Ref. 16).

.

2 Prediction of Iransition Location

o

;ﬁ The prediction methods developed in this work were used
s to estimate the location of transition on a NACA 0018
}EE airfoil. Schlichting (Ref. 1:500) gave a presentation where
:; the experimental transition curves of two body Reynolds
%8 numbers, those of 1,700,000 and 5,000,000, for the NACA
Eg airfoil were compared with stability curves of a Joukowski
{3 0015 airfoil that had a similar pressure distribution. The
‘Eﬁ work presented here used a computer program (which was
ﬁi obtained from Captain J. Lawrence, Ref. 17) that calculated
;:f - boundary-layer parameters at incremental steps along a
15; ‘ED Joukowski airfoil. At various angles of attack, estimates
jg were then made to locate the transition points on the
Z airfoil for the various angles of attack and resultant
:ﬁ coefficients of lift. Transition curves for both a Rgq
zﬁ value of 1355 and the scaled pressure gradient dependent
= method, Equation (24), were used to produce the results
:i presented in Figures 12 and 13. It can be seen in both
§§ cases that the predicted transition curves did a better job
Ef at predicting transition than the stability curves alone,.
&ﬁ The constant Rgq curve gave a closer approximation to the
5% experimental curve for the Rl = 1.7 million case but did not
'5' do as well as the pressure gradient dependent method for the
ﬁ; ;l Ry = 5.0 million case.
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H VI. Conclusions and Recommendations

::ﬁ This work produced two different methods for predicting
'35 the transition of laminar to turbulent flow. The first
,~‘ approach resulted in a pressure gradient dependent technique
;? that matched the available experimental data well in the
;&J region of adverse pressure gradients but underestimated the
" data for favorable pressure gradients., The second method,
‘i% derived from viewing the stability of the flow's vorticity,
?Eg resulted in a criterion of a constant Reynolds number, based !
.;ﬂ on boundary-layer displacement thickness, that fit the data
NN well for favorable pressure gradients but underestimated the
E?ﬁ data for adverse pressure gradient cases. I
- @ Future work in this area could include a more rigorous
ﬁég examination of the modelling techniques, a high-order
:i polynomial fit for the velocity profile, e.g., that might
ny improve the prediction results for both mephods. In
E§ addition Hall and Gibbings (Ref. 13) noted that Rgq,ipnans
133 variod with free-stream turbulence levels., This variation
o could be investigated further or the effect of other
fﬁ; parameters, such as heat transfer, upon Rgq could be
gi examined.
T
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Appendix A
”{: Orr-Sommerfeld Equation Derivation
s
‘ig The Orr-Sommerfeld equation is based on the three-
2 dimensional, nonsteady, encompressible Navier-Stokes equa-
% :
b9 tions, as follows:
.
u au au 3u aP
T p (— + U— + V= + W—=) = X = — + uvly (A1)
.~4 3t ax 3y 3z X
.
".
\:,
L aP
WV av av av v
6 (- # U= + Ve 4+ W) = ¥ = — & uvly (A2)
s at ax 3y 2z ay
o
4
Y
WS
"o w w W aw 3P
p(i—+u3-+v—+w-)=z--+uv2v (A3)
m st X 3y 3z 3y
: au av W
¥, — 4+ — + — =0 (AL4)
N ax 3y 2z
by
R
oA Simpliflying assumptions are that body forces are negligible
:f and that there is only one~dimensional mean flow 1in the
2% x-direction. The total flow variables are sums of mean and
o
e perturbation quantities of the form:
oy
u = ua(y) + u
v = V!
'*' w = W
.. P=P 4+ P
N,
<
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These variables are substituted back into the Navier-Stokes

equations with only the terms linear in u', v',

retained.

, - -
Ut + uu'y + v'uy

Pl

The equations are now of the form:

X

= - — + yvlu!
o]

P'

' T - —_— 2yt
Vie +uv'ly = = - 5 + vVeV

' -—
wt+UW'x

u'y + v'y + W'y =

P!

'
o

Z

- m——— vVZW'
P

or w!

(A5)

(A6)

(AT)

(A8)

The disturbances are considered to be bounded as x and

z tend toward infinity.

periodic of

u'

v! =

wl

Pl

the form

u(y,t)expli(kx
v(y,t)expli(kx
w(y,t)expli(kx
ﬁ(y,t)exp[i(kx

+ 1z)]
+ 12)]
+ 12z)]
+ 1z)]

They are also considered spatially

The equations are now

-~

~ ~ ~ P 1
Gy + T(iku) + vUy = = 1k — + v(=kZ = 12 + Goo)  (A9)

[
~ ~ Py -
g « T(IkV) = = — + w(-k2 - 12 = Vi) (A10)
- . 1P .
e + uliku) = - —— 4 v(=k2 = 12 = wyy)  (A11)
ikd + ¥y + 114 = 0 (A12)
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Equation A9 is multiplied by k/(k2 + 12)1/2 and equation A11
is multiplied by 1/(k? + 12)1/2 and the two are added

together to yield:
3 ~ ~ - ~ ~ - ~
;E(ku + lw) + u(ik)(ku + 1lw) = uyku =
; e -~ - _~
1(k2 + 12)3 + v[-k2(ku + 1W) = 12(k0 + 1w)
2

+ -*’_5 (ka + 1w)] (A13)
3y

New variables are now defined as

‘~ k~ l~ A ] A
u = i v , 32 = k2 4+ 12 y P = :E y L = Kt
(k2 + 12)1/2 K a
where the equations are now of the form:
P
ﬁt + Uu(ial) + \'Ibuy z =ia > + v_ka (=a? + Uyy) (A14)
P
Vg + T(1ad) = —omk + 22 (=02 + Tyy) (415)
icax + ;Y =0 (A16)

Equations A14-A16 are now of the form of equations A9-A12 if

W and 1 are zero, which is the form of the two-dimensional

perturbation case. Since (a/k)v =((kZ + 12)/k)v >v , then

Repit-2d < Rerit-3d and two-dimensional perturbations are

less stable than three-dimensional ones. This result is
known as Squire's theorem, Further analysis can be a
simplified conservatively, therefore, by considering only "

two-dimensional perturbations,

T NAC NI D AP et et
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3

32; If equations A9, A10, and A12 are taken with W = 0 and
“~ ‘_s:_:.

» ~z the mean flow equations are assumed to satisfy the N.S.
f equations, i.e.,

» 1 aP d42g

_.a._zv__ and _£=0

o P 3x dy?2 o 3y

{k then the N.S. equations are then of the form:

1Y

! u't + Eu'x + V'Gy + 1/ P'y = vvlu! (A1T)
‘J'

L _

: vig + uv'y + 1/p P'y = vvlv'! (A18)
53

‘. u'x + v'y =0 (A19)
-

o A stream function, vy , is now introduced

' Q vix,y,t) = B(y)exp[i(ax - Bt)]

. where

3 @ = complex amplitude

N 2

i a = -; (wave number)

/)
fi Br = circular frequency of partial oscillation

Bi = amplification factor

*d

f.': C=8/a

5} C. = velocity of wave propagation in x=-direction
- Ccy = degree of amplification/damping

The perterbation velocities are now defined by

u 1 ﬂ’
3y

1‘\ ‘-"

= P'(y)expli(ax - st)]

SO
1]




A
Y
2
::
; .
«‘: ‘:::'::4 v! = - 3y
2 L ax
ﬁ = =i1af(y)expli(ax - 8t)]
f'
f substituting back into A17, A18, and A19 yields
3 p(-is)expli(ax - Bt)] + uP'iaexpli(ax - 8t)]
¥4
Py
N - iaPexpl[i(ax - Bt)]u' + o
2
%)
32 = v(-B'a2explifax - 8t)] + D' ' 'exp[i(ax - 8t)]) (A20)
a _ Py
3 -asPexpli(ax - Bt)] + UalPexplilax - gt)] + -
.4
= v(iUa3P@expli(ax = 8t)] - ia@'''expliax - gt)] (A21)
| Q
N ' (ia)expliax - 8t)] - (1aB'explilax - 8t)] = O (A22)
§ If equation A20 is differentiated with respect to vy,
Equation A21 is differentiated with respect to x, the
. pressure term is assumed to be indifferent to order of
k3 differentiation, the resultant Equation A21 is subtracted
) from the new Equation A20, and the resultant combined
Y equation is divided through by exp(i(ax - 8t)), then the .
N single combined equation is of the form: ;
P
‘ - - -
. 188" + 1q00" - iqPU" + ia28P - 1a30P =
. A
X v(grrrr - 28"a2 4 olp) (A23) -]
B IS
- @fb And finally, if Equation A23 is divided through by i« (where '
e




!: Tepogey ey '—"vw‘:"' B T e X T ™ T TR T T
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C =8/a), nondimensionalized by R = lUm/v, and the terms
on the left-side of the equation rearranged, the common form

of the Orr-Sommerfeld equation is produced as:

(u = e)(B" = o2p) - u"p |

== 2 (g C 2220 4 Mg (A24)
aR
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Appendix B

Conversion of B Parameter To A Parameter

Pohlhausen's shapefactor is usually defined as:

52 dUp

where
§ = boundary-layer thickness

fluid kinematic viscosity

<
(1]

(=4
"

Ugx™ (U, = constant)

X = streamwise coordinate

Hartree's beta parameter or wedge angle (see Fig. 5) is

defined as (Ref. 1):

L dUp
- — 2 [ ———
B = - g I (B2)
where
L = characteristic length
UQ = free-stream velocity
and
2 X 1]
= ( ) (= il (B3)

If Equation (B3) is substituted into Equation (B2), the

resultant expression for Hartree's parameter is

2 X dUp

= L3 — . u

8 (m < 1) (Um) T (B4)
43




Equations (B1) and (BY4) are then solved for dUp,/dx to

yield:
du Be Upn « (m + 1) Av
B _ m = — (B5)
dx 2 X 5
Rearranging yields,
Umsz

For a given boundary-layer flow, the boundary-layer
thickness is given in terms of the similarity variable, n,

in the form:

§ = ng vx (BT)

where nsis the value of the similarity variable at the edge
of the boundary layer. If Up is approximated by U, and
Equation (BT) is substituted into Equation (B6), the final
expression relating A to g is given by

(n6 )2
A=—T.B.(m+1) (58)

Various authors have tabulated values of nsvariation

with 8 . In this work s values from Reference 18 were used

to convert Rgq,..4¢ results from References 19 and 7 from a

8 dependence to a dependence on A . These results are given

in Table B.
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SR Table B
‘S 8 . s A Ré1serit
N 1.00 1.000 3.372 11.370 12400
: 1.00 1.000 3.372 11.370 12490
- 0.80 0.667 3.564 8.468 10920
R 0.60 0.429 3.769 6.088 8640
0 0.60 0.429 3.769 6.088 8890
"3 0.50 0.332 3.899 5.067 7680
2 0.40 0.250 4,045 4.091 6230
0.30 0.176 4.206 3.122 4550
| 0.20 0.111 4.393 2.144 2955
s 0.20 0.111 4.393 2.144 2830
b3 0.10 0.053 4.626 1.126 1658
X 0.10 0.053 4.626 1.126 1380
¥ed 0.05 0.026 4,767 0.583 865
a 0.00 0.000 4.924 0.000 680
e 0.00 0.000 4.924 0.000 520
o -0.05 -0.024 5.244 -0.671 354
X -0.05 -0.024 5.244 -0.671 318
we . -0.10 -0.0“8 5.356 -10366 199 |
(Y3, -0.14 -0.065 5.624 -2.069 138 |
2 -0.199 -0.090 6.771 -4.162 0 |
7 -0.199 -0.090 6.771 ~4.162 67
N |
L |
e
>3
\
..:_.
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S
N
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Appendix C

Boundary-Layer Thicknesses

For the two internal flow cases the boundary-layer
displacement thicknesses and the boundary-layer moment
thicknesses were approximated following a method given by

Dr. J. Hitchcock (Ref. 20).

A. Parallel Flat Plates
1. Displacement Ihickness
The common definition for the boundary-layer

displacement thickness was given by:

1= [ - X e (c1)

(o]

Here, a flow area was equated to the integration of
(1 = u(y)/U) over a differential perimeter area in the

form:

u(y)) d(perimeter area) (C2)

(flow area) = ./ (1 -
flow area
where from Figure Cila
(flow area) = 2 - w - §1 (c3)
d (perimeter area) = 2wdy + 2hdz (cH)
For two infinite parallel plates (Fig. C1b) the differential
perimeter area became 2wdy. Using a parabolic distribution

for the velocity,

........

......

.............




Fig Cla Parallel Plate Dimensionms,

81,52
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'Fig Cib Infinite Parallel Plates.

Fig C1 Parallel Plate Geometry.
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uly) _ .2y Yy2
= (5) - (1) (C5)

The expression for the displacement thickness was then

h 2
5q = j(1-3%+zﬁ)dy (C6)
(o]
or,
6§19 = h/3 (CT)

2. Momentum Thickness

The momentum thickness is commonly given as:

_ u(y) uly) .4
2= [ T (1= T dy

o)

The approximation used here was

(flow area) = j‘ (Ei%l (1 = Ei%l ))
flow area
d (perimeter area) (C8)
or,
h .
2ws2 = | 3%1 (1 - 20 ) Caway) (c9)
o

Again, using a parabolic velocity distribution yielded:

h

2 2
§2 = f (?-Z-L) (1-2_y+‘i-) dy (C10)
o h he h h2
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B. Pipe EFlow
1. Displacement Thickness
The approximation used here for the boundary-layer

thickness for the pipe was

R
U
(flow area) = Jf (1 - (r)) d(perimeter area) (C12)
o U
where (see Fig. 2C)
flow area = 27Ré, - 78,2
perimeter = 2nrdr f
area N
With a parabolic velocity distribution of, i
2 i
R (C13) g
U R -
a displacement thickness expression was found to be ”
R
ré
2 R6y - 12228 [(1 - (1 =) rar (c14)
R2
o
or,
2Rey - 642 = R/2 (C15) -

This expression resulted in a value of 1 of approximately

(0.293)R.
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The boundary-layer momentum thickness was approximated

using:

5 R
(21IR62 - 18 2) = / U(;) (1 -
(o]

U(r)
U

) (2xrdr) (C16)

Substituting in Equation (C13) yielded

R
(2Rsp - 622) = [ (1 -
o]

p2  p2
;5) (R_z) 4pdr (C17)

or,
2
2R62 - 832 = B

which when solved for s Yielded a value of §2 = (0.1835)R.
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Appendix D
Test Trials

52

Pl ’
N
$
;EE The following computer program, written in its present
i" form by J. Lawrence (Ref. 17), was used to test the
,i? prediction methods developed in this work. Table D shows
gé the results of the runs made. The original function of this
" program was to investigate the effect of a pitching angle of
é} attack on the flow parameters, Cl, Cd, etc. Here a was set
:'i at
! zero.
3
N TABLE D
% RL(X106) __TRIAL
% R, = Const R = t(A)
.g- CL IXIl) (xX/1)
o 1.7 0.6 0.190 0.130
o 1.7 0.5 0.195 0.140
;‘3 1.7 0.3 0.209 0.154
o) 1.7 0.2 0.229 0.170
w 1.7 0.0 0.245 0.200
- 1.7 «0.2 0.270 0.217
¥ 5.0 0.4 0.100 0.124
_$§ 5.0 0.2 0.108 0.135
: 5.0 0.0 0.124 0.174
A 5.0 -0.2 0.132 0.184
A
\*:; 4
2] |
» f
:.;i i“'-."n
%E ".“3:::}
o
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* % 3% MW %

* % "

FPROGRAM FOHL3

COMPLEX CHFLX EI,Z,UZETA,W

OFEN (13,FILE="FLOWIN')

REWIND 15

OPEN (14,FILE=’docout’)

EI=(0.y1,)

RADIUS=1,131

AMU=-,131

READ (15,X%X,END=100) ALPHA,ALOT1,UINF
ALPH1=ALPHA

CON=3.,1415927/180.

THETA=180,

TIME=0.0

CaLL D&(180,,RADIUS,CON,AMU,XLE,YLE)
CALL DS(0.0,RADIUS,CON,AMU,XTE,YTE)
XLE=ABS (XLE)

CHORD=XLE+XTE
PITCH=ADOT1XCONXO . SXCHORD/UINF

K=100
K1=K+1
K2=(ALFHA+150)%X100+K

WRITE(16,30)UINF
WRITE(16,40)ALPHA
WRITE(16,50)AD0T1
WRITE(16,32)

ANGLE=ALPHA+THETA

CALL U(ANGLE,RADJUS,CON,EI,UINF,AMU,ALPHA,UO0)
CALL DS(ANGLE,RADIUS,CON,AMU,X0,Y0)
ANGLE=ANGLE-0.01

CALL U(ANGLE,RADIUS,CON,EI,UINF,AMU,ALPHA,U1)
CALL DS(ANGLE,RADIUS,CON,AMU,X1,Y1)
ANGLE=ANGLE-0.01

CALL UCANGLE,RADIUS,CON,EI,UINF,AMU,ALPHA,U2)
CALL DS(ANGLE,RADIUS,CON,AMU,X2,Y2)

DS2=(SART ( (X2-X1)XX2+(Y2-Y1)%%2))/CHORD
DS1=(SART((X1-X0)XX2+(Y1-YO)%%2))/CHORD

Stagnation point velocity gradient computed using a

forward difference method; all other velocity gradients
computed using central difference method.

DUDS=(U2-U0)/(DS1+DS2)

Second derivative of velocity computed using a
Taylor‘s Series expansion.

D2UDS2=(U2-2.XU1+U0Y/((NS1+DS2) /2. ) ¥%x2

Lo e
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Enter initial boundary layer parameters.

RLAMDA=7.,0352

RK=0.0770

FK=0.0

DZDS=-0,04652%X02UNS2/ (DUNSX%X2)
ZZ=RK/DUDS

N=50 :

ANGLE=ALFHA+THETA-0.01

X0C=(X0+XLE)/CHORD

F2K=0.¢
WRITE(16,1)X0C,U0,F2K,RLAMDA,FK,RK,2Z,DZ0IS

AN0OT=0.0
D0 10 J=1,K

Function of this loop is to compute boundary layer
parameters at stagnation point, allowing the
boundary layer to steady-out before sub.jecting it
to a pitching airflow.

N=N+1
Compute pertinent boundary layer parometers,

Z2Z=0LZDSX[S1+4ZZ
RK=ZZxDUns
FK=,47-6.X%XRK
DZDS=FK/U1

DELT=CHORDXDS1 /UL

TIME=TIME+DELT

CALL U(ANGLE,RANNIUS,CON,EI,UINF,AMU,ALPHA,U2)
DUDT=(U2-Ul)/DELT

ANGLE=ANGLE-0,01

ANGLE1=ANGLE-0.01

CALL U(ANGLE1,RAI'IUS,CON,EI,UINF,AMU,ALFHA,U2)
Call DS(ANGLE1l,RAINIUS,CON,AMU,X2,Y2)
ANGLEO=ANGLE+0.01

CALL U(ANGLEO,RADNIUS,CON,EI,UINF,AMU,ALFHA,UO)
CALL DS(ANGLEO,RADNIUS,CON,AMU,X0,Y0)

CALL U(ANGLE,RADIUS,CON,EI,UINF,AMU,ALFHA,Ul)
CALL DS(ANGLE,RADIUS,CON,AMU,X1,Y1)

DS1=(SART( (X1-X0)X%X2+(Y1-YO0)%X2))/CHORD
DS2=(SART({X2-X1)Xk2+(Y2-Y1)%X%X2) ) /CHORD

DSS=DS1+082
punsS=(uU2-U0)>/DSS
UDuDS=U1%DUDS
X0C=(X1+XLE)/CHORD

..........
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IF(NLLT.GD) G2 TO 10

MO
WRITE(16,1)X0C,Ul,F2K,RLAMDA,FK,RK,ZZ,DZ05
CONTINUE

ADOT=ADOT1
N=0
DO 20 J=K1,K2

Function of this loop is to compute the behavior
of the boundary layer as it is sub.jected to a
pitching airfoil.

N=N+1
Compute the pertinent boundary layver parameters.

ZZ=DZDSXDS1+ZZ
RK=ZZx(DUDS+DUDT/7UL)

CALL POHL(RK,RLAMDA)

DEL2=37./315.-RLAMDA/ P45 .~ (RLAMIIAXX2) /9072, |
FRK=2,%XDEL2%(2.,-.3683XRLAMDIA++0104XRLAMDAX X2+
(RLAMDAXX3)/4536)

F2K=(,3-RLAMDA/120.)/DEL2
DZDS=(FK+(4.,+F2K)XZZXDUDT/U1) /U1

Compute the time increment for a particle to
travel from point (i) to point (i+l).

DELT=CHORDXDS1/Ut

TIME=TIME+DELT

DALPHA=DELTXADOT

ANGLE=ANGLF.+DALPHA

ALPH1=ALPH1+DALPHA

CALL U(ANGLE,RADIUS,CON,EI,UINF,AMU,ALPH1,U2)

Compute the unsteady velocity gradient.

DUDT=(U2-U1)/DELT

ANGLE=ANGLE-0.01

ANGLE1=ANGLE-0.01

CALL U(ANGLE1,RADIUS,CON,EI,UINF,AMU,ALPH1,U2) '
CALL DS(ANGLE1,RADIUS,CON,AMU,X2,Y2)
ANGLEO=ANGLE+0.01

CALL UCANGLEO,RADIUS,CON,EI,UINF,AMU,ALFPH1,U0)

CALL DS(ANGLEO,RADIUS.CON,AMU,X0,Y0)

CALL U(ANGLE,RADINTUS,CONSJEI,UINF,AMU,ALFH1,Ul)

CALL DS(ANGLE,RADIUS,CON,AMU,X1,Y1)

Compute arc length and velocity gradient.
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40
43
S0
32
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60
80

&

100

P T L B I R

LS1=(SARTO{NI-YO Y442+ (Y1~YO)XXk2Y ) /CHORD
DSZ=(SARY( (X2-X1 ) %424+ (¥2~Y 1) X%k2))/CHORD
nSS=n81+082 T
puns=(uU2-U0) /DSS

ununs=u1xpuns

X0C=(X1+XLE)/CHORD

Stop the computotion at the quarter-chord.

IF(X0OC.GE.0.500) GO TO 25

IF(N.LT.250) GO TO 20

N=0
WRITE(16,1)X0C,U1,F2K,RLAMIA,FK,RK,2ZZ,0DZDS
CONTINUE

WRITE(16,1)X0C,U1,F2K,RLAMDA,FK,RK,2Z,0Z0S
WRITE(16,43)ALPH1 :

WRITE(16,55)FITCH

WRITE(16y460)RK

WRITE(16,80)

WRITE(16,81)TIME
FORMAT(4X,F6.3,2(8XyF10.3)y4XyF7.3,4XyF7.4,4X,FB.4,2¢(4X,E9?.3))
FORMAT(1H1, *BOUNDARY-LAYER PARAMETERS FOR ",F6.2,°FT/SEC"/)
FORMAT(®* INITIAL ANGLE OF ATTACK: *,F6.3," DEGREES"/)
FORMAT(/" FINAL ANGLE OF ATTACK?! *,Fé.3," DEGREES"/)
FORMAT(®* PITCH RATE? *,F7.3,* DEGREES/SEC®/)

FORMAT (6X, *X0OC*,10X,"U", 11X, "F2K" 49X, "LAMEDA",8X, *FK*,
PXy"RK"911X,%°2",11X,*I70S"*/)

FORMAT(®* FITCH FARAMETER: *,F7.5/)

FORMAT(®* K AT THE QUARTER-CHORD? °*,F8.4/)

FORMAT(® TIME TO REACH THE QUARTER-*)

FORMAT(® CHORD FROM THE STAGNATION POINT? *,F7.5," SEC*'/)

STOP
END

SUBROUTINE U(ANGLE,RADIUS,CON,EI,UINF,AMU,ALFHA,UU)
COMFLEX CMPLX,Z,EI,DZETA,W

Function of this subroutine is to to compute the local
value of velncity on a JouKowski Airfoil using complex
potential flow theory.

X=RAD1USXCOS (ANGLEXCON)
Y=RADIUSXSIN(ANGLEXCON)
ZsCMPLX(XyY) .
WaUINFX((1.,0,)=(RADNIUSKX2) /Z%x%X2+
(2. XEIXRADIUSXSINC(ALPHAXCON))/2)
X=X+AMU




<
)
NEERS X
oy X Z chanyed tou repre- Vehaet b Loordinates used in :
v the transformation equaflou. : !
X !
Z=CMFLX(X,Y) |
~ DZETA=(ZXX2~ (RﬁDIUS+ﬁMU)**°)/Z**” |
N ' UU=CARS(W)/CABS(DZETA) 1
RETURN
o END ‘
5 X |
X
N SURROUTINE DS(ANGLE,RADIUS,CON,AMU,X,Y)
N . COMPLEX CMPLX,Z
X
;q x Function of this subroutine is to compute the arc )
ﬁr X length between two points on the Joukowski Airfoil.
2 x )
?' X=RADIUSXCOS (ANGLEXCON) +AMU
H Y=RADIUSXSIN(ANGLEXCON)
Z=CHPLX(X,Y)
‘20 Z=Z+( (RALIUS+AMU) X%2) /2
LS X=REAL (Z)
I\ Y=AIMAG(Z)
% RETURN
: ‘E. END -
N . % |
': x 1
SUBROUTINE POHL (RK,RLAMDA) ]
) x
§ x Function of this subroutine is to compute the value ]
x of the separation parameter, Lamda, given a value
Y X of Ky as computed in the main program.
Y X
, RK1=-,160
;J RK2=-,112
o . RK3=0,00
RK4=0,06
el RKS5=0,076
RK6=0,086
- . RK7=0,0949
Y’ IF(RK.LE.RK1) GO TO 10
e IF(RK.LE.RK2) GO TO 20

- IF(RK.LE.RK3) GO TO 30
A IF(RK.LE.RK4) GO TO 40
P! IF(RK.LE.RKS) GO TO S0

. IF(RK.LE.RK6) GO TO 60
5! IF(RK.GT.RK?7) GO TO 70

2 x
- RLAMDA=,0149KX2- (RK~0 .08 ) K2
B oR RLAMDA=12,~100, KSGRT (RLAMDIA)
yq RETURN




RLANMUA=(2, /.01 4mnria. 0

RETURN
RLAMIIA=(4.,/,044)XRK+2,18
RETURN
RLAMDA=(10./,14)%RK
RETURN
“ .
S 40 RLAMDA=83, 33%RK
<o RETURN
P X
2 * 50 RLAMDA=-1,9+115,XRK -
RETURN
- X
- 60 RLAMDA=~6,54+176 . XRK
,f? RETURN
2t X
N 70  RLAMDA=12,
~ RETURN
% END
. x
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